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ABSTRACT

The coarseness error inherent in a TLM simulation
involving sharp edges is reduced by increasing the speed of
pulse propagation around the discontinuity with only a
local mesh modification. The implementation of the tech-
nique is described in detail and the method is applied to a
narrow band E-plane filter.

INTRODUCTION

The transmission-line matrix (TLM) method of numer-
ical electromagnetic analysis in three dimensions with the
symmetrical condensed node (SCN) [1] is well established.
However, if edges or corners are present then it is often
found that frequency domain characteristics are shifted
towards lower frequencies. This can be overcome by
increasing the mesh resolution, but finite computer
resources impose limits on this approach. It is possible to
get improved resuits by reducing the timestep only (keep-
ing the spatial resolution constant), provided that a node
with good dispersion characteristics is selected. This may
require only a small increase in storage but the run-time
problem remains. Graded mesh [2] or multiple grid [3]
techniques can be used, but the resources are still greater
than for a simple coarse mesh in which the resolution is
determined solely by the highest frequency of interest.

A technique is required in which a local modification is
made around the discontinuity, imposing only a small com-
putational burden. Previously, inductive stubs have been
added to two dimensional TLM nodes with good results
[4]. A general three dimensional technique has been
applied to the modeling of wires, in which the velocity of
the pulses in the vicinity of the discontinuity is increased at
the expense of a reduction in timestep for the whole prob-
lem space [5]. In this paper, a method which does not
require a global change in timestep [6] is described in
detail.
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THE NEW METHOD

To apply the method to the structure shown in Fig. 1, a
modification is made to the four nodes surrounding the
end of the septum, which is modeled with a short-circuit
boundary placed between nodes. The time taken for volt-
age pulses to travel around the end of the septum is
reduced by eliminating the delay associated with the link-
lines. The set of four nodes can be treated as a “supernode”
in which the internal link-lines are not present. Alterna-
tively, the internal pulses can be calculated first and then
the standard scattering procedure can be applied to the
four nodes separately. This second method can be imple-
mented more simply and this is the approach adopted here.
No special treatment is required for pulses travelling paral-
lel to the septum.

In the absence of stubs, the internal pulses can be cal-
culated using the standard scattering matrix, provided that
this is done in the order shown in Fig. 2a. However, stubs
are required to increase the capacitance and inductance so
that the correct result is obtained. In this case, the internal
voltage pulses are mutually dependant and it is necessary
to solve for all internal pulses simultaneously. This is done
by equating the incident and reflected pulses from adjacent
nodes and solving the resulting simultaneous equations to
yield expressions for the internal pulses in terms of the
external pulses only. These expressions can then be simpli-
fied to reduce the number of arithmetic operations which
must be performed.

IMPLEMENTATION

For the SCN in which open-circuit stubs (coupling
with the electric field) are used to model increased capaci-
tance and short-circuit stubs (coupling with the magnetic
field) are used to model increased inductance, a computa-
tionally efficient way of writing the scattered pulses is [7]:
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where {, j and k subscripts are the directions (x, y or z), Z0 is
the link-line characteristic impedance and the three voltage
pulse subscripts denote the direction of the link-line, ‘n’ or
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‘p’ for the negative or positive side of the node (taking the
origin at the centre), and the link-line polarization. The
node voltages and loop currents are given by:
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i ; and Vi ; are the voltage pulses incident from the stubs
couplmg w1th the electric and magnetic fields, respectively,
and Y and Z are the corresponding normalized stub
admittances and impedances. For maximum flexibility, the
stubs can be different in each direction, in the same way as
for anisotropic materials with diagonal permittivity and
permeability tensors. This is a simple extension from the
isotropic case.

For the four nodes shown in Fig. 2b, it is best to first
calculate the internal pulses between nodes C and D. For
the y polarization:
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and @’ is used to represent an intermediate quantity calcu-
lated in the same way as a standard voltage pulse, but
without the undetermined internal voltage pulse. For
example:
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For the z polarization:
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Once these four pulses are known, the other internal
pulses can be calculated as for two separate pairs of nodes.
For the pair AC, these pulses are:
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Each of the 4 internal pulses between nodes C and D
depends upon 32 external and stub pulses (7 each from
nodes A and B, and 9 each from nodes C and D). If these
pulses are then treated as external pulses on the node pairs
AC and BD, then each of the 8 remaining internal pulses
depend upon 14 external and stub pulses (7 from each node
in the pair). The exact number of arithmetic operations
required for the complete procedure will depend upon
whether certain coefficients are stored or re-calculated at
each timestep and will typically be: 120-148 additions/sub-
tractions, 64-62 multiplications and 0-12 divisions. This
compares to 24 additions/subtractions and 6 multiplica-
tions for the standard 12-port SCN [8] and to 54 additions/
subtractions and 12 multiplications for the stub-loaded
node (with 6 coefficients stored) [7].

For more complicated situations, for example, a corner
on an infinitesimally thin plane, more nodes are connected
together and it is then debatable whether it is worth simpli-
fying the scattering procedure since this geometry occurs
less frequently. In this case, the equations can be solved
using a standard symbolic computation package. If the



resulting expressions cannot be easily simplified by the
package, the stub values can be included to give a set of
purely numeric coefficients.

SELECTION OF STUB VALUES

The stub values needed to correctly model an infinites-
imally thin septum have been obtained from a systematic
optimization for the structure shown in Fig. 1. For a two-
dimensional system, 2 = 2b, and cubic nodes with a node
spacing of Al = a/16, the frequency of the first resonance
(electric field in the plane) is correctly predicted with open-
circuit stubs of normalized capacxtance (relatlve to the
capacitance of a standard node) C = (.54 and C = 0.54.
The second and subsequent resonances are in good agree-
ment if an inductive stub is added ﬁ = 0.62. For a cavity
with the same cross-section, addltlonal stubs must be
added for the cav1ty resonances to be predicted accurately:
£, =013 and I: = 0.13. These stub values are found to
give good results over a range of discretizations and also
for a finned waveguide [6]. To a first approximation, they
can be considered to depend on the geometry of the edge
only and do not need to be re-calculated for each new sys-
tem.

APPLICATION TO AN E-PLANE FILTER

The correction has been applied to the narrow band E-
plane filter shown in Fig. 3. This filter has a 1% bandwidth
and is particularly sensitive to coarseness error. Details of
the model are described in the next paragraph. These
parameters were selected to give sufficiently good results
to test the coarseness error correction and were not opti-
mized to minimize computer resources.

To model the exact dimensions, the shapes of the nodes
were distorted slightly and the hybrid SCN [9] was used
for the resultant non-cubic nodes. Simple matched bound-
ary conditions were used to terminate the problem on the
ends of the waveguide, at a distance of 36mm from the fil-
ter. The wave reflection coefficient was selected to mini-
mize reflections at the center frequency of the filter. Such a
simple boundary description is only appropriate for nar-
row band devices. An impulse excitation, of constant
amplitude across the waveguide cross-section, was used to
introduce energy into the system. The simulation was run
for 24ns. The outputs were taken at a distance of 18mm
from the filter and a single-sided linear window function
was applied to the last 10% of the time-domain output to
reduce truncation errors in the Fourier transform.

Typical results for zero thickness septa are shown in
Fig. 4. The resolution around the septa for the first two
curves is /32 and a/64. Even with a doubling of mesh
resolution (requiring 4 times the storage and 8 times the
run-time) the centre frequency is still too low. The problem
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could be solved with a graded or multiple grid mesh, but
the region of high resolution must extend significantly
beyond the edges of the septa for accurate results to be
obtained and the resources are still excessive.

For comparison, a curve for the same filter but with 1
mil. thick septa is shown in Fig. 5 [10], as well as the same
curve shifted for zero thickness [11}. There is good agree-
ment with the curve obtained frorm the corrected coarse
mesh. The new method provides an order of magnitude
improvement and requires essentially the same resources
as the standard coarse mesh. If recuired, the stub values
can be tuned slightly to fit the expected response even
closer, but this can only be done if this is known in
advance.

CONCLUSIONS

The use of a coarseness error correction allows a rela-
tively coarse mesh to be used to model a system with negli-
gible impact on accuracy. With the proposed method, good
results have been obtained for an E-plane filter and prelim-
inary results for more general 3-dimensional geometries
have been encouraging. A reduction in the reliance on
mesh refinement techniques will enable the accurate mod-
eling of complex systems to become feasible on modest
workstations.
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Fig. 2 Transfer of voltage pulses
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Fig. 3 E-plane filter (dimensions in mm)
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Fig. 4 521 for the E-plane filter
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Fig. 5 Independent results for the E-plane filter




