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ABSTRACT

The coarseness error inherent in a TLM simulation
involving sharp edges is reduced by increasing the speed of

puke propagation around the discontinuity with ody a

local mesh modification. The implementation of the tech-

nique is described in detail and the method is applied to a
narrow band E-plane filter.

INTRODUCTION

The transmission-line matrix (TLM) method of numer-

ical electromagnetic analysis in three dimensions with the

symmetrical condensed nc)de (SCN) [1] is well established,
However, if edges or corners are present then it is often

found that frequency domain characteristics are shifted

towards lower frequencies. This can be overcome by

increasing the mesh resolution, but finite Ccqputer
resources impose limits on this approach. It is possible to

get improved results by reducing the timestep only (keep-
ing the spatial resolution constant), provided that a node

with good dispersion characteristics is selected. This may

require only a small increase in storage but the run-time
problem remains. Graded mesh [2] or multiple grid [3]

techniques can be used, but the resources are still greater

than for a simple coarse mesh in which the resolution is
determined solely by the highest frequency of interest.

A technique is required in which a local modification is

made around the discontinuity, imposing only a small com-

putational burden. Previously inductive stubs have been

added to two dimensional TLM nodes with good results

[4]. A general three dimensional technique has been

applied to the modeling of wires, in which the velocity of

the pubes in the vicinity of the discontinuity is inc~awd at

the expense of a reduction in timestep for the whole prob-
lem space [5]. In this paper, a method which does not

require a global change in timestep [6] is described in

detail.

THE NEW METHOD

To apply the method to the strut lure shown in Fig. 1, a
modification is made to the four nodes surrounding the

end of the septum, which is modeled with a short-circuit

boundary placed between nodes. The time taken for volt-
age pulses to travel around the end of the septum is
reduced by eliminating the delay associated with the link-
lines, The set of four nodes can be treated as a “supernode”

in which the internal link-lines are not present. Alterna-

tively, the internal pulses can be calculated first and then

the standard scattering procedure can be applied to the

four nodes separately, This second method can be imple-

mented more simply and this is the approach adopted here,

No special treatment is required for pulses traveling paral-

lel to the septum,

In the absence of stubs, the internal pulses can be cal-
culated using the standard scattering matrix, provided that

this is done in the order shown in Fig. 2a. However, stubs

are required to increase the capacitance and inductance so

that the correct result is obtained. In this case, the internal

voltage pulses are mutually dependimt and it is necessary

to solve for all internal pulses simultaneously. This is done

by equating the incident and reflected pulses from adjacent
nodes and solving the resulting simultaneous equations to
yield expressions for the internal pulses in terms of the
external pulses only. These expressions can then be simpli-
fied to reduce the number of arithmetic operations which

must be performed.

IMPLEMENTATION

For the SCN in which open-circuit stubs (coupling

with the electric field) are used to model increased capaci-

tance and short-circuit stubs (coupling with the magnetic

field) are used to model increased inductance, a computa-

tionally efficient way of writing the scattered pulses is [7]:

V;nj= Vj+zo +-v!
fPl

V;pj= Vj-Z.. Ik- V;nj

where i, j and k subscripts are the directions (x, y or z), ZO is

the link-line characteristic impedance and the three voltage
pulse subscripts denote the direction of the link-line, ‘n’ or
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‘p’ for the negative or positive side of the node (taking the

origin at the centre), and the link-line polarization. The
node voltages and loop currents are given by

‘i= ‘~i (v~fli + ‘~~i + ‘~~i + ‘~~i + ‘; “ ‘~~)

~~= ‘~i ( ‘~p~ – ‘~~~ - ‘~~j + ‘~~j – ‘~i)

where

k,, = 2/(4+@ and kmi = 2/z.(4+ 2:)

V~i and V~i are the voltage pulses incident from the stubs
coupli~g with t& electric and magnetic fields, respectively,
and ?i and Zi are the corresponding normalized stub
admittances and impedances. For maximum flexibility the

stubs can be different in each direction, in the same way as
for anisotropic materials with diagonal permittivity and

permeability tensors. This is a simple extension fmm the
isotropic case.

For the four nodes shown in Fig. 2b, it is best to first

calculate the internal pulses between nodes C and D. For

the y polarization

~ ) /cy
CvXPy = ‘A&y ‘ BD$ - BDby ‘ Ac y

J&= (BDay . & -Achy ~~Dgy) /cy

where

A?y ‘l-( Akmz-Aex k ) ‘#m. – ye.)

a = I – (Bkmz – Bkex) (Dkmz – ~kex)
BD y

ACby = A(fy ‘#m. - c$ey ) + (&mz) 2 (Akmz – Akcx)

BDby = BDay (Dkmz - Dkey) + (Dkmz) 2 (Bkmz – ~kex)

CY = A~y “ BDay - ACby “ BDby

ACcy = C%, ‘- Ao;px
k ) d ) ‘A&y “ C“:py

+ ‘Aknzz ‘A ex C ynx

BDGy = Dkmz ‘B”~px – ‘Bkmz – Bkex) D y..‘r ) + BDUY” DQjnY

and 0“ is used to represent an intermediate quantity calcu-
lated in the same way as a standard voltage pulse, but
without the undetermined internal voltage pulse. For

example:

r
A@ypx

= Avx + Z. AI’Z-Atiynx

where

Av’x = Ake.x ‘Avy.. + ~<nx +Allpz +Af: ~Avix)

A1’Z = Akm.z (Atiipy – AvX.y + AVynx - Atimz)

For the z polarization

CVXPZ = ‘Adz “ BD~z - BDbz ‘ A($Z) /cz

D~%nz = (BDaz ~Ac<z -Acbz. BD~z)/cz

where

Adz = 1- (Akmx -Akez) (&mx - #ez)

B mz - ~kez) (Dkmx - Dkez)BDaz=l -(k

ACbz = Adz ‘&my – C!ez) + ‘dez) 2 ‘Akmx – Akez)

BDbz = BDUZ (Dkmy – Dkez) + (Dkez) 2 (Bkmx – ~kez)

CZ = A(fz “ BDUZ - ACbz “ BDbz

ACLZ = #ez ‘A@jpz - ‘Akmx - Akez) c“~.z) ‘Adz “ C%pZ

BD$ = Dkez ‘B@~pz - ‘#m. - Bkez) DQ~nz) + BDU.Z D@~nz

Once these four pulses are known, the other internal
pulses can be calculated as for two separate pairs of nodes.

For the pair AC, these pulses are:

Atiypx = (c@;nx - (~mz - #,x) A@~px) ‘A~Y

Cvynx = (Aafpx - (Akmz - ~kex) c@;nx) /A&y

Avypz = (c@;nz - (#mx - &ez) A@;pz) /A&z

c~ynz = (A@’pz - (Akmx -Akez) Co;nz) /A~z

Each of the 4 internal pulses between nodes C and D

depends upon 32 external and stub pulses (7 each from

nodes A and B, and 9 each from nodes C and D). If these

pulses are then treated as external pulses on the node pairs
AC and BD, then each of the 8 remaining internal pulses

depend upon 14 external and stub pulses (7 from each node
in the pair). The exact number of arithmetic operations

required for the complete procedure will depend upon

whether certain coefficients are stored or re-calculated at
each timestep and will typically be 120–148 additions/sub-
tractions, 6ti2 multiplications and 0–12 divisions. This
compares to 24 additions/subtractions and 6 multiplica-
tions for the standard 12-port SCN [8] and to 54 additions/

subtractions and 12 multiplications for the stub-loaded

node (with 6 coefficients stored) [7].

For more complicated situations, for example, a corner

on an infinitesimally thin plane, more nodes are connected

together and it is then debatable whether it is worth simpli-

fying the scattering procedure since this geometry occurs
less frequently. In this case, the equations can be solved
using a standard symbolic computation package. If the
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resulting expressions cannot be easily simplified by the

package, the stub values can be included to give a set of

purely numeric coefficients.

SELECTION OF STUB VALUES

The stub values needed to correctly model an infinites-
imally thin septum have been obtained from a systematic
optimization for the structure shown in Fig. 1. For al two-
dimensional system, a = 2b, and cubic nodes with a node
spacing of Al = a/16, the frequency of the first resonance

(electric field in the plane) is correctly predicted with open-

circuit stubs of normalized capacitance (relative to the
capacitance of a standard node) ~~ = 0.54 and ~~ = 0.54.

The second and subsequent resonan~es are in good agree-

ment if an inductive stub is added ~Z = 0.62. For a cavity

with the same cross-section, additional stubs must be

a~ded for the cav~ty resonances to be predicted accurately:

Lx = 0.13 and ~Y = 0.13. These stub values are found to
give good results over a range of discretizations and also
for a finned waveguide [6]. To a first approximatiorl, they

can be considered to depend on the geometry of the edge

only and do not need to be re-calculated for each new sys-

tem.

APPLICATION TO AN E-PLANE FILTER

The correction has been applied to the narrow band E-

plane filter shown in Fig. 3. This filter has a 1% bandwidth

and is particularly sensitive to coarseness error. Del ails of
the model are described in the next paragraph. These
parameters were selected to give sufficiently good results
to test the coarseness error correction and were not opti-

mized to minimize computer resources.

To model the exact dimensions, the shapes of the nodes

were distorted slightly and the hybrid SCN [9] was used

for the resultant non-cubic nodes. Simple matched bound-

ary conditions were used to terminate the problem on the

ends of the waveguide, at a distance of 36rnm from the fil-

ter. The wave reflection coefficient was selected tcl rnini-

rnize reflections at the center frequency of the filter. Such a

simple boundary description is only appropriate for nar-

row band devices. An impulse excitation, of constant

amplitude across the waveguide cross-section, was used to

introduce energy into the system. The simulation was run

for 24ns. The outputs were taken at a distance of 18mm

from the filter and a single-sided linear window function

was applied to the last ‘1O’7Oof the time-domain output to
reduce truncation errors in the Fourier transform.

Typical results for zero thickness septa are shown in

Fig. 4. The resolution around the septa for the first two

curves is a/32 and a/64, Even with a doubling of mesh
resolution (requiring 4 times the storage and 8 times the
run-time) the centre frequency is still too low. The problem

could be solved with a graded or multiple grid mesh, but

the region of high resolution mu!;t extend significantly

beyond the edges of the septa for accurate results to be

obtained and the resources are still excessive.

For comparison, a curve for the same filter but with 1

roil. thick septa is shown in Fig. 5 [10], as well as the same

curve shifted for zero thickness [11!1.There is good agree-
ment with the curve obtained from the corrected coarse
mesh. The new method provides an order of magnitude

improvement and requires essentially the same resources
as the standard coarse mesh. If rec~uired, the stub values

can be tuned slightly to fit the expected response even

closer, but this can only be done if this is known in

advance.

CONCLUSIONS

The use of a coarseness error correction allows a rela-

tively coarse mesh to be used to model a system with negli-

gible impact on accuracy. With the proposed method, good
results have been obtained for an E-plane filter and prelim-
inary results for more general 3-dimensional geometries

have been encouraging. A reduction in the reliance on

mesh refinement techniques will enable the accurate mod-

eling of complex systems to become feasible on modest

workstations.
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Fig. 5 Independent results for the E-plane filter
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